Đề cương ôn tập giữa học kì 2 môn Toán 8 - Năm học 2023-2024
Bạn đang xem tài liệu "Đề cương ôn tập giữa học kì 2 môn Toán 8 - Năm học 2023-2024", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
de_cuong_on_tap_giua_hoc_ki_2_mon_toan_8_nam_hoc_2023_2024.pdf
Nội dung tài liệu: Đề cương ôn tập giữa học kì 2 môn Toán 8 - Năm học 2023-2024
- Đềcương ôn tập giữa kỳ II môn Toán 8 ĐỀCƯƠNG ÔN TẬP GIỮAHỌC KÌ2 MÔN: TOÁN 8 NĂMHỌC 2023-2024. I. PHẦN TRẮC NGHIỆM M3 x2 6 3 Câu 1. Tìmđa thức M thỏa mãn ( với x ). 2x 3 6x 9 2 A. 3 2 6x. B. x2 6 . C. x2 2. D. 3 . 2 5 1 x x 1 Câu 2. Tìmđa thức P thỏa mãn ( với 0; 1xx). 5x2 5x P A. x . B. x 1. C. 5 1 x . D. x 1. 2x3 y2 Câu 3. Phân thức nào dướiđây bằng với phân thức ? 5 14x3 y4 14x4 y3 A. ( với , 0xy). B. ( với , 0xy). 35xy 5xy 14x4 y3 14x4 y3 C. ( với , 0xy) D. ( với , 0xy). 35 35xy 3 x Câu 4. Phân thức nào dướiđây bằng với phân thức ( với x 3 ). 3 x x 3 x2 6 x 9 9 x2 x2 6 x 9 A. . B. . C. . D. . 3 x 9 x2 3 x 2 3 x 2 x2 4 Câu 5. Kết quả rút gọn phân thức ( với 0, 2xx). x2 2x x 2 x 2 x 1 x 1 A. . B. . C. . D. . x x x x 2xy 10y Câu 6. Kết quả rút gọn phân thức ( với 0, 5yx). 3xy2 15y2 2 2xy 2x2 2y A. . B. . C. . D. . 3y 3xy2 3y2 3y2 25x 2 x Câu 7. Kết quả rút gọn phân thức ( với 0, 2xx). 15x x 2 2 5x 5x 5 5 A. . B. . C. . D. . 3x x 2 3x 2 x 2 3 2x 3 2 x 1 Câu 8. Với x y , hãy viết phân thức dưới dạng phân thức có tử là x2 y2 ? x y x2 y 2 x2 y2 x2 y2 x2 y 2 A. . B. . C. . D. . y2 x y x y x y x y 2 x y Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 Câu 9. Chọn câuđúng trong các câu sauđây 2 2 5a 5 b 5 5a 5 b 25 A. . B. . 3a 3 b 2 3 3a 3 b 2 9 4x3 4x2 4 x 2 b2 b a C. . D. . x21x 2 1 a ab b 1 1 Câu 10. Mẫu chung của hai phân thức và là x2 y 2xy A. 2x2 y . B. x2 y.2xy . C. 2x2 y 2 . D. x2 y .2xy 1 1 Câu 11. Mẫu thức chung của hai phân thức và là x 3 x 3 A. 2 3x. B. x2 x 2 3 . C. 2 3 2 3xx . D. 2 9x. 1 1 Câu 12. Mẫu thức chung của hai phân thức và là x2 xy x2 A. x2 x y . B. x2x 2 xy . C. x2 xy . D. x2 x y . 4x 5 Câu 13. Mẫu thức chung của hai phân thức và là x2 5x 2x 10 A. x2 5x . B. 2x x2 5 x . C. 2 5xx. D. 2 5xx . x 1 6 Câu 14: Quy đồng mẫu thức các phân thức: và ta được 5x2 y xy2 xy y 6x xy y 30x A. và . B. và . 5x2 y2 5x2 y2 5x2 y2 5x2 y2 x y 30x xy y 3x C. và . D. và . 5x2 y2 5x2 y2 5x2 y2 5x2 y2 4x 5 Câu 15: Quy đồng mẫu thức hai phân thức: và ta được x 5 x 5 x2 20x 5x 2 4x2 x 5x 25 A. và . B. và . x2 25 x2 25 x2 25 x2 25 4x2 20x 5x 25 4x2 20x 5x 2 C. và . D. và . x2 25 x2 25 x2 25 x2 25 7x 2x Câu 16: Chọnđáp ánđúng khi thực hiện phép tính . 5xy2 5xy2 7x 9x 9 9 A. . B. . C. . D. . 5xy2 10xy2 5xy2 5y2 2 5 Câu 17: Kết quả phép tính là x 1x 1 Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 3 7 3 7 A. . B. . C. . D. . x 1 x 1 x 1 21 x 2x 5x Câu 18: Chọnđáp ánđúng khi thực hiện phép tính . x 1x 1 7x 7 x 7x 7x A. . B. . C. . D. . 2x 1 x 1 x 1 x 1 x 3 5 x 4 Câu 19: Chọnđáp ánđúng khi thực hiện phép tính . 2x2 5 2x 2 5 6x 7 6x 1 4x 1 6x 1 A. . B. . C. . D. . 2x2 5 2x2 5 2x2 5 2x2 5 3x2 6 2 x 2 5 Câu 20: Chọnđáp ánđúng khi thực hiện phép tính . 7x2y 3 5x 7 x 2y 3 5x 5x2 1 x2 11 x2 1 x2 1 A. . B. . C. . D. . 7x2y 3 5x 7x2y 3 5x 7x2y 3 5x 14x2 y 10x Câu 21: Cho tam giác ABC đồng dạng với tam giác ABC . Phát biểu nào sauđây là sai? ABAC ABBC A. A C . B. . C. . D. B B . AB AC AB BC Câu 22: Cho tam giác ABC và haiđiểm M, N lần lượt thuộc các cạnh BC, CA sao cho MN// AB . Khẳng định nào sauđây làđúng? A. AMN đồng dạng với ABC . B. ABC đồng dạng với MNC . C. NMC đồng dạng với ABC . D. CAB đồng dạng với CMN . Câu 23: Trong các phát biểu sau, phát biểu nàođúng: A. Hai tam giác đồng dạng thì bằng nhau. B. Hai tam giác bằng nhau thì không đồng dạng. C. Hai tam giác bằng nhau thì đồng dạng. D. Hai tam giác vuông luôn đồng dạng với nhau. Câu 24: Hai tam giác ABC và tam giác DEF có A80 ; B 70 ; F 30 ; BC 6cm .Nếu ABC đồng dạng với DEF thì: A. 170 ; 6cmDEF B. 80 ; 6cmEED C. 70D D. 30C AB AC BC Câu 25: Cho ABC và DEF có thì: DF DE EF A. ABC∽ DEF . B. ABC∽ DFE . C. ABC∽ EDF . D. ABC∽ EFD . Câu 26: Hai tam giác nào mà các cạnh có độ dài như sau thì không đồng dạng với nhau? A. 4dm ;3 dm ;2 dm và 8dm ;6 dm ;4 dm . B. 40cm ; 50cm ;60 cm và80cm ; 100cm; 120cm . Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 C. 14cm ;10 cm ;14 cm và 7 cm;7 cm ;5 cm . D. 9cm;7 cm ;3 cm và 7 cm;14 cm ;18 cm . Câu 27. Cho tam giác ABC có AB 6cm, AC 9cm, BC 12cm và tam giác MNP có 8cm,NP NM 12cm, PM 16cm . Khẳng định nào sauđây làđúng? A. ABC MNP∽ . B. ABC NMP∽ . C. ABC NPM∽ D. BAC MNP∽ . Câu 28. Vớiđiều kiện nào sauđây thì ABC MNP∽ ? AB AC BC AB AC BC AB AC BC AB AC BC A. . B. . C. . D. . MN MP NP MP MN NP NP MP MN MN NP MP RS RK SK Câu 29. Cho tam giác RSK và PQM có , Khiđó: RQ QM MP A. RSK PQM B. RSK PMQ C. RSK MPQ D. RKS QPM 2 Câu 30. Cho ABC đồng dạng với DEF theo tỉsố đồng dạng k .Hỏitỉsố chu vi của hai tam 5 giác là bao nhiêu? 5 2 A. . B. ; C. 2 . D. 5 . 2 5 Câu 31. Cho ABC EDC∽ như hình vẽ. Tính độ dàiđoạn thẳng CD . A. 5 B. 4 C. 4,5 D. 3 Câu 32. Cho hai tam giác ABC và DEF có kích thước như trong hình, hai tam giác có đồng dạng vơi nhau không nếu có thì tỉsố đồng dạng là bao nhiêu? A. ABC DEF∽ tỉsố đồng dạng là 2 . B. Hai tam giác khôngđồng dạng. 5 5 C. ABC FED∽ tỉsố đồng dạng là . D. ABC DEF∽ tỉsố đồng dạng là 3 3 Câu 33. Cho ABC ∽MNP biết AB 3cm, BC 4cm, MN 6cm,MP 5cm . Khiđó: A. 8cmACvà 2,5cmNP. B. 2,5cmACvà 8cmNP. Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 C. 2,5cmACvà 10cmNP. D. 10cmACvà 2cmNP. Câu 34. Cho ABC có AB 4cm, AC 6cm, BC 9cm và MNP có 8cmMN, 12cm,MP 18cmNP.Tỉsố chu vi của hai tam giác ABC và MNP là: 3 5 1 A. . B. 2 . C. . D. . 5 6 2 Câu 35. Trong tam giác ABC vuông tại C , biết 15m, 12mAB. Tính độ dài ACBC . A. 18m . B. 15m . C. 9m . D. 9m . Câu 36. Trong tam giác MNP vuông cân tại M , biết 5cmMN. Tính độ dài NP . A. 5cm . B. 10cm . C. 10 2 cm . D. 5 2 cm Trong đề k có 37,38 Câu 39. Tam giác nào là tam giác vuông trong các tam giác có độ đài ba cạnh như sau: A. 15cm;8cm;18cm B. 21dm;20dm;29dm . C. 5m;6m;8m . D. 2m;3m; 4m . Câu 40. Cho tam giác ABC có AB 5, AC 13, BC 12 . Tam giác ABC là tam giác gì? A. ABC vuông tại A . B. ABC vuông tại B . C. ABC vuông tại C . D. ABC vuông cân tại A . II. PHẦNTỰLUẬN DẠNG 1. RÚT GỌN BIỂU THỨC Bài 1. Rút gọn các phân thức sau 12x3 y 18xy 12x2 y a) b) c) 15xy4 12yz 16xy2 2 3mm n 3m 6n x 3 2y x d) e) g) 6m2 m n 10n 5m x 2 y 2 Bài 2. Rút gọn các phân thức sau 2 2m2 mn m2 2mn n2 3a a b a) b) c) 2mn n2 m2 n 2 33a2 33ab a2 4ab 4 b2 8 y3 x2 4x d) e) g) a2 4b 2 y 4 2y y2 x2 16 x2 xy 10x2 5x 9x2 30xy 25y2 h) i) k) x2 y2 4x2 1 25y2 9 x 2 Bài 3. Rút gọn các phân thức sau x2 4xy 4y2 x 2 x2 2xy y2 a) b) c) x2 4 y 2 x2 4 x2 y 2 Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 2 x2y 2 3x 3y y x 9x2 24 x 16 d) e) g) x2 y 2 x3 y3 9x2 16 DẠNG 2. THỰC HIỆN PHÉP TÍNH Bài 4: Thực hiện phép tính: x 1 4x 5 5 9x 11x x 18 xy x2 a) b) c) d) x 1 1 x 2x 1 1 2x 2x 3 3 2x x2 y2y 2 x 2 Bài 5: Thực hiện phép tính: x 2 x9 x 9 x 5 2 x 7 x 4 a) b) x 1 1x 1 x 2x 3 3 2x 3 2 x 2x2 x x 1 2 x2 4 x22x 2 x 2 5 4 x c) d) x 1 1x x 1 x 3 3x x 3 Bài 6: Thực hiện phép tính: 1 1 3x 2 1 x y a) b) 6x 4y 6x 4y 4y2 9x2 2x 2y 2x 2y y2 x2 x x4 xy x 1 1x 2 x(1 x) c) d) x 2y x 2y 4y2 x2 x 3 x 3 9 x2 1 3xy x y x y x2 3y2 e) f) x y y3 x3 x 2 xy y 2 2x 2y 2y2 2x2 DẠNG 3. BIỂU THỨCTỔNG HỢP x1 x 1 4 Bài 7. Cho K . x 1x 1 1 x2 a) Tìmđiều kiện xác định của K . b) Rút gọn K . 1 c) Tính giá trịcủa K khi x 2 ; x . 2 d) Tìm số nguyên x để K nhận giá trị nguyên. 4 2 5x 6 x2 5 x 2 Bài 8. Cho biểu thức M ; N . x 2 x2 4 x2 x2 4 a) Vớiđiều kiện nào của x thì giá trịcủa biểu thức M và N được xác định? b) Rút gọn M . c) Tính giá trịcủa N khi 5x. d) Tìm giá trị nguyên x để P MN nhận giá trị nguyên. 1 2 2x 10 Bài 9. Cho biểu thức P . x 5 x5 x 5 x 5 a) Tìmđiều kiện xác định của P . b) Rút gọn biểu thức P . c) Tìm giá trịcủa x để P 3 . 3 1 18 Bài 10. Cho biểu thức: P x 3 x3 9 x2 a) Tìmđiều kiện xác định của P b) Rút gọn biểu thức P Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 c) Tìm giá trịcủa x để P 4 x2 x 2 Bài 11. Cho biểu thức: A x2 4 x2 x 2 a) Vớiđiều kiện nào của x thì giá trịcủa biểu thức A được xác định? b) Rút gọn biểu thức A c) Tìm giá trịcủa biểu thức A tại x 1 2 3 6 Bài 12. Cho biểu thức: P 2x 3 2 x 1 2 x 3 2 x 1 a) Tìmđiều kiện xác định của P b) Rút gọn biểu thức P c) Tìm giá trịcủa x để P 1 x2 2x x 5 50 5 x Bài 13. Cho biểu thức: P . 2x10 x 2 x x 5 a) Tìmđiều kiện xác định của P . b) Rút gọn biểu thức P . 1 c) Tìm giá trịcủa x để 0;PP . 4 x 2 5 1 Bài 14. Cho biểu thức P x 3 x2 x 6 2 x a) Tìmđiều kiện xác định của P b) Rút gọn biểu thức P c) Tính giá trị biểu thức P khi 2 9 0x d) Tìm giá trị nguyên của x để biểu thức P cũng có giá trị nguyên x 4 2 x 2 x Bài 15. Cho biểu thức B : x.( x 2) x2 x x 2 a) Tìmđiều kiện xác định của B và rút gọn B; b) Tính giá trị biểu thức B biết 2;x c) Với giá trị nào của x thì B là số nguyên âm lớn nhất? 1 x2 4 Bài 16: Cho biểu thức: P 2 4 1 x 2 x x a) Tìmđiều kiện xác định của P và rút gọn P . b) Tính giá trịcủa P biết 2 1x. c) Tìm x để P đạt giá trịlớn nhất. Tìm giá trịlớn nhấtđó. 2x2 1 1 x2 2 Bài 17: Cho biểu thức: C 3 : 1 2 x1 x 1 x x 1 a) Tìmđiều kiện xác định của C và rút gọn C . 1 b) Tính giá trịcủa C với x . 2 c) Tìm x để C . d) Tìm x để 2 1CCđạt giá trị nhỏ nhất. Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 DẠNG 4. HÌNH HỌC THỰCTẾSỬDỤNGĐỊNH LÝ PYTHAGORE Bài 18: Một bạnhọc sinh thả diều ngoài đồng, cho biếtđoạn dây diều từ tay bạn đến diều dài 170m và bạn đứng các nơi diều được thả lên theo phương thẳng đứng là 80m. Tính độ cao của con diều so vớimặt đất, biết tay bạnhọc sinh cách mặt đất 2m. Bài 19: Để xác định chiếcđiện thoại là bao nhiêu inch, các nhà sản xuấtđã dựa và độ dài đường chéo của màn hìnhđiện thoại, biết 1 2,54inch,điện tho cmại có chiều rộng là 7cm , chiều dài là 15,5cm .Hỏi chiếcđiện thoại nhưvậy là bao nhiêu inch? (làm tròn kết quả đến hàng phần mười) Bài 20. Theo quy định của khu phố,mỗi giađình sửdụng bậc tam cấp di động đểdắt xe vào nhà không được lấn chiếm vỉa hè quá 85cm ra phía vỉa hè. Biết rằng nhà bạn Nam có nền cao 60cm so vớivỉa hè và có chiều dài bậc tam cấp là 1m . Theo em nhà bạn Nam có thực hiệnđúng quy định của khu phố không? Vì sao? Nền nhà Bậctamcấp Bài 21. Tính chiều dài đường trượt AC trong hình vẽ trên (kết quả làm tròn đến hàng phầnmười) Bài 22. Một chiếc thang có chiều dài 3,7mABđặt cách một bứctường khoảng 1,2mBH. a) Tính chiều cao AH ? b) Khoảng cách đặt thang cách chân tường là BH có “an toàn” không? Biết khoảng cách “an AH toàn” khi 2,0 2,2 (xem hình vẽ). BH Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 Bài 23. Trong một buổi cắm trại “Kỹnăng sống” nhóm bạn Túđã dựng một cái lều chữ A (hình bên). Nhóm bạn Tú cần dựng thêm một cây cột AH chính giữalều. Với số liệuđã cho em hãy giúp bạn Tú tính toán chiều dài cây cột AH để nhóm bạn Tú hoàn thành việc dựng lều nhé. Bài 24. Lúc 7 giờ sáng, Anđi từ nhà đến trường bằng xeđạpđiệnvớivậntốc trung bình 13 /kmhtheo đườngđi ABCDEnhư trong hình. Nếu có 1 con đường thẳng từ A đến E vàđi theo con đườngđó vớivậntốc trung bình 13 /kmh.BạnAnsẽtới trường lúc mấy giờ (làm tròn đến phút) (hình minh họa). DẠNG 5. HÌNH HỌCTỔNG HỢPVỀ TAM GIÁCĐỒNG DẠNG Bài 25: Cho tam giác ABC vuông tại A có 6 ; 8AB.Kẻ cm đườ ACng cao cmAH. a) Chứng minh ABC HBA∽ b) Tính độ dài các cạnh ,BC AH. c) Tia phân giác của góc ACBcắt AH tại E , cắt AB tại D . Tính tỉsố diện tích của ACDvà HCE. Bài 26. Cho tam giác ABC vuông tại A có 6 , 8cm. Đường cm phânAB giác của AC gócABC cắt cạnh AC tại D .Từ C kẻ CE BDtại E . AD a) Tính độ dài BC và tỉsố . DC b) Chứng minh ABD EBC.Từ đó suy∽ ra BD. EC AD BC CD CE c) Chứng minh . BC BE d) Gọi EH là đường cao EBC. Chứng minh CH. HB ED EB Bài 27. Cho tam giác ABC có ba góc nhọn, các đường cao AD , BE cắt nhau tại H . Chúc các em ôn tập và thiđạt kết quảtốt
- Đềcương ôn tập giữa kỳ II môn Toán 8 a) Chứng minh: ADC∽ BEC ; b) Chứng minh: HE. HB HA. HD ; c) Gọi F là giaođiểm của CH và AB . Chứng minh: AF. AB AH. AD ; HD HE HF d) Chứng minh: 1. AD BE CF Bài 28. Cho hình bình hành ABCD có AC BD .Gọi H; K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD . Tia Dx cắt AC, AB, BC lần lượttại I,,MN . J làđiểm đốixứng với D qua I . Chứng minh: CH CK 2 a) ; b) CHK∽ BCA ; c) AB AH AD AK AC; CB CD JM DM 2 d) IM. IN ID; e) JN DN . Bài 29. Cho tam giác ABC , cácđiểm H;;GO lần lượt là trực tâm, trọng tâm, giaođiểm 3 đường trung trựccủa tam giác ABC .Gọi M, N theo thứtự là trungđiểm của BC và AC . Chứng minh: a) OMN∽ HAB ; b) GOM∽ GHA ; c) Bađiểm ;;OGthẳ Hng hàng và GH 2. OG . Bài 30. Cho hình thang MNPQ ( MNP// Q), QMN QNP.Gọi O là giaođiểm của MP và NQ . a) Chứng minh rằng: MNQ N∽QP . b) Cho MN 9 cm, PQ 16cm . Tính NQ,,NO OQ và tỉsố diện tích của MNQ và NQP . c) Tia phân giác MNQ cắt MQ tại A , tia phân giác NQP cắt NP tại B . Chứng minh: AM BP AQ BN. d) Chứng minh: AB// MN . DẠNG 6. NÂNG CAO a2 b2 c 2 Bài 31. Cho a3b 3 c 3 3 abcvà a b c 0 . Tính giá trịcủa biểu thức: N (a b c)2 2020x y z Bài 32. Cho 2020xyz. Chứng minh rằng: 1 xy2020 x 2020 yz y 2020xz z 1 Bài 33. Cho , , 0; 0ab. Rút c gọn abiểu b th cức: a2 b 2 c2 A . a2 b2 c 2 b 2 c 2 a2 c 2 a 2 b 2 Bài 34. Tìm giá trịlớn nhất của biểu thức sau: x x2 a) A 2x2 6 x 3 ; b) B ; c) C . (x 100)2 x4 1 Bài 35. Tìm giá trị nhỏ nhất của biểu thức sau: x2 4x 1 (x 100)2 a) A 3x2 8 x 9; b) B ; c) với x 0 . x2 x HẾT Chúc các em ôn tập và thiđạt kết quảtốt